

Operating instructions RFID read/write head with J1939 interface

efectoriso

DTM426 DTM427 DTM436 DTM437

CE

Contents

1	Preliminary note	4 4
2	Safety instructions 2.1 General. 2.1 General. 2.2 Target group	4 4 4
	 2.3 Electrical connection 2.4 Tampering with the device 	4 5
3	Functions and features	5
4	Installation.4.1 General installation instructions4.2 Notes on the tag installation4.3 Avoiding interference	5 5 5 5
5	Indicators	6
6	 SAE J1939 interface. 6.1 Structure of the SAE J1939 protocol	7 7 7 8 8
	6.3 Configuration examples	9
7	Parameter mapping	10
8	Device status	10
9	ID tag data access	12 12 13
10	Settings. 10.1 Device address (0x2000) and baud rate (0x2001). 10.2 Address claiming 10.3 Reset RFID read/write head.	14 14 14 14
11	Maintenance, repair and disposal	15
12	Glossary	15

UK

Licences and trademarks All trademarks and company names used are subject to the copyright of the respective companies.

1 Preliminary note

This document applies to the device of type "RFID read/write head with J1939 interface" (art. article no.: DTM426 / DTM427 / DTM436 / DTM437). This document is part of the device.

This document is intended for specialists. These specialists are people who are qualified by their appropriate training and their experience to see risks and to avoid possible hazards that may be caused during operation or maintenance of the device. The document contains information about the correct handling of the device.

Read this document before use to familiarise yourself with operating conditions, installation and operation. Keep this document during the entire duration of use of the device.

Adhere to the safety instructions.

1.1 Symbols used

- Instructions
- > Reaction, result
- [...] Designation of keys, buttons or indications
- \rightarrow Cross-reference

Important note

J Non-compliance may result in malfunction or interference.

Information

Supplementary note

2 Safety instructions

2.1 General

These instructions are an integral part of the device. They contain texts and figures concerning the correct handling of the device and must be read before installation or use.

Observe the operating instructions. Non-observance of the instructions, operation which is not in accordance with use as prescribed below, wrong installation or incorrect handling can seriously affect the safety of operators and machinery.

2.2 Target group

These instructions are intended for authorised persons according to the EMC and low-voltage directives. The device must be installed, connected and put into operation by a qualified electrician.

2.3 Electrical connection

Disconnect the unit externally before handling it.

The connection pins may only be supplied with the signals indicated in the technical data and/or on the device label and only the approved accessories of ifm may be connected.

2.4 Tampering with the device

In case of malfunctions or uncertainties please contact the manufacturer. Any tampering with the device can seriously affect the safety of operators and machinery. This is not permitted and leads to the exclusion of any liability and warranty claims.

3 Functions and features

The RFID read/write heads are used for reading and describing RFID tags. The read/write head is configured and data is exchanged via the integrated J1939 interface.

Typical applications are for example the identification of interchangeable tools and attachments on mobile machines.

4 Installation

4.1 General installation instructions

- Observe the separate mounting instructions.
- When mounting several read/write heads adhere to the minimum distances between the systems.
- The immediate vicinity of powerful HF emission sources such as welding transformers or converters can affect operation of the read/write heads.

4.2 Notes on the tag installation

Installation of the tags in or on metal reduces the read and write distances.

!

!

The orientation of the read/write head antenna axis must correspond with the axis of the tag coil.

4.3 Avoiding interference

The RFID read/write head generates a modulated electrical field with a frequency of 13.56 MHz. To avoid interference of the data communication no other devices generating interference emission in this frequency band must be operated in its vicinity. Such devices are for example frequency converters and switched-mode power supplies.

Indicators

Operating status	LED green	LED yellow	LED red
Ready	On	Off	Off
Deactivated	Flashing (every 1 s)	Off	Off
ID tag detected	Off	On	Off
Reading/writing of ID tag data successful	Off	Flashing (0.25 s)	Off
Error while reading or writing ID tag data	Off	Flashing (every 1 s for 0.125 s)	Off
CAN communication error	Off	Off	On
Hardware failure	Off	Off	Flashing (every 1 s)

6 SAE J1939 interface

The RFID read/write heads have a standardised SAEJ1939 interface. All measured values and parameters can be accessed via the J1939 protocol. The individual configuration can be saved in the internal permanent memory.

6.1 Structure of the SAE J1939 protocol

The SAE J1939 protocol uses a 29-bit CAN identifier (extended frame format CAN 2.0B). A J1939 message has the following structure:

J1939 message									
	29-bit CAN identifie	Data							
Priority	PGN	Source address	User data of the message						
2826	258	70	08 bytes						

Parameter Group Number (PGN)							
Ext. Data page	Data Page	PDU Format (PF)	Target Address / Group Extension (PS)				
25	24	2316	158				

PDU format 1 (specific)				
00h - EFh	Target Address (DA)			
2316	158			

PDU format 2 (global)				
F0h - FFh	Group Extension (GE)			
2316	158			

6.1.1 PDU format 1

This format defines a message which is sent to a defined device. In this case the PDU-specific byte (PS) is the target address (DA) of the device. If the value of the PDU format field (PF) is between 0x00 and 0xEF, it is a PDU format 1 message.

For proprietary messages (manufacturer-specific) the PDU format value 0xEF is defined.

Ext. data page bit = 0 and data page bit = 0.

6.1.2 PDU format 2

This format defines a message which is sent globally. In this case the PDU specific byte (PS) corresponds to the group extension (GE). If the value of the PDU format field (PF) is between 0xF0 and 0xFF, it is a PDU format 2 message.

For proprietary messages (manufacturer-specific) the area PDU format (PF) and group extension (GE) 0xFF00 - 0xFFFF is defined.

Ext. data page bit = 0 and data page bit = 0.

6.2 Proprietary protocol in PDU format 1

The parameters of the device are listed in a table that is accessed per 16-bit index. To access the sensor parameters in reading or writing the proprietary PDU format 1 message is used. PDU format (PF) corresponds to the value 0xEF. In this case the PDU-specific byte (PS) is the target address (DA) of the device which is to receive the message. If more than 4 bytes are transferred, the J1939 transport protocol must be used.

Example:

Address target unit (ECU): 0x3B

Address control unit / master: 0x14

Priority of the message: 3

CAN identifier	8-byte data frame						
ID	Parameter index	Read/Write	Status	1 byto data			
29 bits	2 bytes	1 byte	1 byte	4-Dyle uala			

Requirement:	Master	\rightarrow	ECU
--------------	--------	---------------	-----

OXCEFEB14 LSB MSB RW 0 LSB MSB

Response: Master ← ECU

0xCEF14EB	LSB	MSB	RW	SC	LSB			MSB
-----------	-----	-----	----	----	-----	--	--	-----

Parameter index: 2-byte parameter index.

RW: Read parameter \rightarrow 0x00 / write parameter \rightarrow 0x01

SC: Status code

- 0x00: OK
- 0x01: Parameter value too small
- 0x02: Parameter value too big
- 0x03: Parameter index does not exist
- 0x04: Parameter can only be read
- 0x05: Parameter can only be written

0x06: No access to parameter

0x07: Invalid data size

0x08: Parameter writing blocked

(example: The value to be written is already set in the sensor)

0x09: Invalid command

0x0A: Unknown error

0x0B: Error while reading or writing from ID tag

6.3 Configuration examples

Address target unit (ECU): 0xEB

Address control unit / master: 0x14

Priority of the message: 3

Example: Set block size of ID tag to 8, index 0x2800

Requirement: Master \rightarrow ECU

CAN identifier				8-byte da	ata frame			
0xCEFEB14	0x00	0x28	0x01	0x00	0x08	0x00	0x00	0x00

Response: Master ← ECU

CAN identifier				8-byte da				
0xCEF14EB	0x00	0x28	0x01	0x00	0x08	0x00	0x00	0x00

7 Parameter mapping

Index	Туре	Value	R/W	Saved	Preset
0x0500	Byte stream	Device name	ro		
0x0501	Byte stream	Software version	ro		
0x2000	Unsigned8	Default device rw address (may be changed after address claiming)		х	235
0x2001	Unsigned16	Baud rate in kBit/s	rw	Х	250
0x2002	Boolean	Device reset	rw		
0x2080	Unsigned8	Device status	ro		
0x2800	Unsigned8	Block size	rw	Х	4
0xA000	Byte stream	ID tag UID	ro		
0xA001	Byte stream	ID tag data	rw		

8 Device status

The parameter with the index 0x2080 represents the current device status:

Bit	31	30	29	28	27	26	25	24			
Status		tag_err									
Bit	23	22	21	20	19	18	17	16			
Status		acc_err									
Bit	15	14	13	12	11	10	9	8			
Status	r	r	r	r	r	r	r	J1939_ err			
Bit	7	6	5	4	3	2	1	0			
Status	claim	r	buf_ovfl	fr_err	r	present	ant	pow			

Status	Value	Description
pow	1	Power enabled (value always 1)
ant	0	Antenna disabled
	1	Antenna enabled
Present	0	No ID tag present
	1	ID tag present
fr_err	0	Front end OK
	1	Front end error detected (hardware problem)
buf_ovfl	0	Buffer OK
	1	Buffer overflow detected
claim	0	Address claiming OK
	1	Address claiming not successful
J1939_err	0	No J1939 error occurred
	1	J1939 error occurred
acc_err		Error of last write operation
tag_err		Error message ID tag for last operation

Access error codes: (updated after each write or read access of the ID tag)

Index	Value	Description
0x00	ISO_COMMAND_ERROR_NO_ERROR	No error, command successfully executed
0x01	ISO_COMMAND_ERROR_NO_RESPONSE	ID tag did not answer; maybe ID tag is not in the field anymore?
0x02	ISO_COMMAND_ERROR_RX_ERROR	Error while receiving the answer from the ID tag (CRC error, framing error, collision, etc.)

ID tag error codes: (updated after each read or write access of the ID tag)

Index	Value	Description
0x00	ISO_TAG_ERROR_NO_ERROR	No error from ID tag
0x01	ISO_TAG_ERROR_COMMAND_NOT_ SPECIFIED	The command is not supported. Exp.: Command code error
0x02	ISO_TAG_ERROR_COMMAND_SYNTAX	Cannot recognise the command. The number of blocks is too high. Exp.: Format error
0x03	ISO_TAG_ERROR_OPTION_NOT_ SUPPORTED	Option is not supported
0x0F	ISO_TAG_ERROR_OTHER	Other error
0x10	ISO_TAG_ERROR_BLOCK_NOT_USABLE	The specified block cannot be used (or was not found)

Index	Value	Description
0x11	ISO_TAG_ERROR_BLOCK_ALREADY_ BLOCKED	The specified block is locked and cannot be locked again
0x12	ISO_TAG_ERROR_BLOCK_NOT_ UPDATEABLE	The specified block is locked and its contents cannot be updated
0x13	ISO_TAG_ERROR_BLOCK_WRITE_ VERIFY	The specified block cannot be programmed (a write verify error occurred)
0x14	ISO_TAG_ERROR_BLOCK_LOCK_VERIFY	The specified block cannot be locked (a lock verify error occurred)

9 ID tag data access

9.1 Read data from ID tag

The data is read by the ID tag by sending a "read parameter" frame with the following information:

- Data address
- Data length

CAN identifier	8-byte data frame								
ID	Parameter index		Read/ Write	Status	ID tag		ID tag		
29 bits	2 bytes		1 byte	1 byte	Data addı	ress	Data leng	th	
	0x01	0xA0	0x00	0x00	LSB	MSB	LSB	MSB	

Example:

Read 8 bytes of data from ID tag address 4

Requirement: Master → ECU

	UXAU	0x00	0x00	0x04	0x00	0x08	0x00				

0xCEF14EB	0x01	0xA0	0x00	0x00	Data[0]	Data[1]	Data[2]	

Make sure, that the ID tag is in the range of the RFID read/write head. If there was an error while reading data, the status byte of the response is 0x0B.

9.2 Write data to ID tag

The data is written to the ID tag by sending a "write parameter" frame with the following information:

- Data address
- Data length
- Data

CAN identifier		x-byte data frame									
ID	Parameter index Read/ Write Status ID tag		ID tag ID tag		ID tag						
29 bits	2 bytes	2 bytes 1 byte 1 byte Data address		Data	ength	Data					
	0x01	0xA0	0x00	0x00	LSB	MSB	LSB	MSB	Data[0]	Data[x]	

Example:

Write 4 bytes of data (0xAA,0xBB,0xCC,0xDD) to ID tag address 2

Requirement: Master \rightarrow ECU

0xCEFEB14 0x01 0x01 0x00 0x02 0x00 0x04 0x00 0xAA 0xBB 0xCC	0xDD	D
---	------	---

Response: Master ← ECU

0xCEF14EB	0x01	0xA0	0x01	0x00
-----------	------	------	------	------

Make sure, that the ID tag is in the range of the RFID read/write head. If there was an error while reading the data, the status byte of the response is 0x0B.

10 Settings

10.1 Device address (0x2000) and baud rate (0x2001)

Valid values for the device address are: 0 to 253.

The preset device address should be preferably used. Via "address claiming" the device address can be changed.

Valid values for the baud rate are: 250 kBits/s and 500kBits/s.

- The RFID device is supplied with the following default settings:
- Device address (ECU) 235
- Baud rate 250 kbit/s

Make sure that the set device address is used only once in the CAN network. Use "address claiming" in the CAN network to avoid conflicts (\rightarrow 10.2).

The changed device address and baud rate become effective after reset of the RFID read/write head. Reset read/write head via reset command or hardware reset (\rightarrow 10.3).

10.2 Address claiming

The RFID read/write head supports "dynamic address claiming". The RFID read/ write head has the default address 235.

With this device address, the sensor logs in to the network during start-up. Unless there is an address conflict with other network participants, the sensor starts communication automatically.

Arbitrary address capable (CA):

If the set address of the device is already used in the network, the participant with a higher priority will be accepted by the network. The rejected network participant with a lower priority will be assigned another valid device address.

The RFID read/write head tries to claim the preferred device address first. If a participant with higher priority claims this device address, the RFIED read/ write head will look for another valid device address.

10.3 Reset RFID read/write head

By writing the value "1" to the parameter index 0x2002 the read/write head is reset.

It is reset immediately. There is no response frame from the read/write head for this command.

11 Maintenance, repair and disposal

- Do not open the housing as the device does not contain any components which can be maintained by the user. The device must only be repaired by the manufacturer.
- Dispose of the device in accordance with the national environmental regulations.

12 Glossary

Term	Description
ID tag	RFID tag
UID	Unique identification number of an ID tag
J1939	SAE J1939 communication protocol for vehicle components
LED	Light emitting diode
ECU	Electronic Control Unit, device participating in the CAN network